An Improved In Situ and Satellite SST Analysis

Richard W. Reynolds
Thomas Smith
NCDC/NESDIS/NOAA

Diane Stokes
Wanqiu Wang
NCEP/NWS/NOAA

Nick Rayner
Hadley Centre, Met Office, UK

Introduction

- Examine SST Differences for 1982 – present
 - Focus on climate scales SSTs
- Discuss Changes in NOAA OI
 - OI version 2 (OI.v2)

Main Topics

- 1. Overview
- 2. In Situ Differences
- 3. Satellite Differences
- 4. Analysis Differences

SST Anomaly Data and Analysis

Data Coverage

Latitude Range: 60°S-60°N

In Situ 1° Data Squares

Satellite 1° Data Squares

Ship Minus Buoy Differences on 1° weekly collocated grid

Region	No. Pairs	Bias
60°S-20°S	17,753	0.08°C
20°S-20°N	45,605	0.04°C
20°N-60°N	160,180	0.17°C
60°S-60°N	223,538	0.14°C

All weeks: 1982-2000

Monthly Data Summaries

- In Situ Data from the Comprehensive Ocean-Atmosphere Data Set (COADS)
 - Reference data set for intercomparisons
 - Version: enhanced COADS (E-COADS)
- Satellite AVHRR Retrievals
 (tuned with respect to buoys)
 - Operational
 - Daytime
 - Nighttime
 - Algorithm: RSMAS/NESDIS/US Navy
 - Pathfinder (Reanalysis)
 - January 1985 December 1997
 - Daytime
 - Nighttime
 - Algorithm: RSMAS/JPL

Satellite Data wrt E-COADS

Latitude Range: 60°S-60°N

Pathfinder ——— Operational ———

Nighttime Satellite wrt E-COADS Pinatubo period excluded

Bias: Jan1985-May1991, Jun1992-Dec1997

0.2

0.3

0.4

0.5

-0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.1

SST Analyses

All use in situ & operational AVHRR data

- NOAA OLv1
 - Reynolds and Smith, 1994, Journal of Climate
- NOAA OI.v2
 - Reynolds, Rayner, Smith, Stokes and Wang,
 2002, Journal of Climate, in press
 - Used UK sea-ice to SST algorithm based on climatological fit
 - Used COADS data through 1997
- UK Global sea-Ice and SST (GISST)
 - Rayner, Horton, Parker, Folland, Hackett, 1996, unpublished manuscript
- UK Hadley Centre sea-Ice and SST (HadISST)
 - Parker, Rayner, Horton and Folland, 1999,
 WMO Workshop on Advances in Marine Climatology-CLIMAR99

Analysis Differences wrt E-COADS

Latitude Range: 60°S-60°N

Analysis Differences wrt E-COADS

0.6

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

Bias: JAN1982 to DEC1997

RMS Differences wrt OI.v2

RMSD: JAN1982 to DEC1999

1.4

1.2

0.8

0.6

0.4

0.2

1

Seasonal Differences

Bias (Ol.v2 - HADISST): 1982-1999

Objective Determination of Analysis Accuracy

- Withhold a random 20% of buoy SSTs from analyses
 - Define set as buoy IDs ending in 4 or 9
- Use withheld buoy data for objective comparison
 - Compute Bias and RMSD between buoys and analyses

Conclusions

- Significant differences remain among analyses
 - Global average differences of ~ 0.05 °C
 - RMS differences of 1°C are common
 - Tropical differences are the lowest
 - Largest uncertainties occur in sparse data regions: especially in sea-ice margins
- Comparisons with E-COADS (enhanced COADS) were useful to examine large space and time scale differences
- An objective method is needed to better quantify the differences

E-mail: Richard.W.Reynolds@noaa.gov